Plant Archives Vol. 25, No. 1, 2025 pp. 2974-2980

Plant Archives

Journal homepage: http://www.plantarchives.org DOI Url : https://doi.org/10.51470/PLANTARCHIVES.2025.v25.no.1.427

CULTURAL, MORPHOLOGICAL AND PATHOGENIC VARIABILITY IN PHYTOPHTHORA DRECHSLERI F.SP. CAJANI ISOLATES CAUSING STEM BLIGHT OF PIGEON PEA (CAJANUS CAJAN L.)

Deepak Kumar¹, Satyendra Kumar Vishwakarma², Gaurav Ayodhya Singh², Rishi Nath Pandey¹ and Pankaj Singh²*

¹Department of Plant Pathology, Chaudhary Charan Singh University, Meerut - 250 001 Uttar Pradesh, India. ²Department of Plant Pathology, Sadar Vallabhbhai Patel University of Agriculture and Technology, Meerut - 250 110, U.P., India. *Corresponding author E-mail : pankaj94585@gmail.com

(Date of Receiving-03-01-2025; Date of Acceptance-21-03-2025)

Phytophthora blight of pigeon pea is caused by *Phytophthora drechsleri* f.sp. *cajani*. It is a potentially important disease of pigeon pea in India after fusarium wilt and sterility mosaic disease. The present study was carried out at Department of Plant Pathology, ICAR-Indian Institute of Pulses Research, Kanpur. 30 isolates of *Phytophthora drechsleri* f.sp. *cajani* were collected from different parts of central and eastern Uttar Pradesh. Cultural, morphological and pathogenic variability was determined of 30 isolates and pathogenic variability determined follow inoculation on two susceptible varieties, UPAS120 and ICP7119 at the seedling stage. On the basis of cultural variability, colour and texture of colony, 30 isolates were categorized into 5 groups *i.e.*, cottony white fluffy colony (18 isolates), cottony white mat type colony (3 isolates), creamy white fluffy colony (2 isolates), creamy white mat type colony (6 isolates) and light pink fluffy colony (1 isolates). Based on the morphology of sporangia were categorized into 3 types *i.e.*, papillate (11 isolates) and non-papillate (5 isolates). On the basis of pathogenicity experiments carried out of 30 isolates, 7 isolates (*Pdc12, Pdc14, Pdc16, Pdc18, Pdc21* and *Pdc22*) showed 100% mortality on pigeon pea cultivars. The maximum size of sporangia was recorded in isolate *Pdc17* (320.92 μm²).

Key words : Cajanus cajan, Pathogenicity, P. drechsleri f.sp. cajani, Sporangia, Variability.

Introduction

Pigeon pea [Cajanus cajan (L.) Millsp.], an often cross-pollinated, diploid perennial grain legume, is the fourth most important food legume in the world after dry bean (Phaseolus vulgaris L.), field pea (Pisum sativum L.) and chickpea (Cicer arietinum L.) (Pande et al., 2011). In India, it is the second most Important food legume crop after chickpea. It is grown under a wide range of cropping systems in the Deccan Plateau in India (Reddy et al., 1998). It is rotated with cereal crops increase the yield of cereals by enhancing soil nitrogen and helps in breaking the disease cycle of important cereal pathogens (Jadesha et al., 2019). Pigeon pea is susceptible to many diseases and insect pests but only a few of them are economically important (Nene et al., 1996; Vishwa Dhar et al., 2004). Phytophthora stem blight caused by Phytophthora drechsleri Tucker f. sp. cajani is a

potentially important disease of pigeon pea in India after fusarium wilt and sterility mosaic disease (Kanaiyan et al., 1984). The first suspected occurrence of Phytophthora blight on pigeon pea in India was reported in 1966 by Williams et al. (1968). He first isolated a PBcausing pathogen from wilted pigeon pea plants with stem canker symptoms at New Delhi, India. Since its appearance, the disease had spread to most pigeon pea growing areas in Asia (Pal et al., 1970; Williams et al. (1975), Africa, America (Kannaiyan et al., 1984), Australia (Weaning and Birch, 1988), Dominican Republic, Kenya, Panama and Puerto Rico (Nene et al., 1996). Amin et al. (10) described it is a new species Phytophthora cajani. Singh and Dube (2005) has been reported cultural and morphological variability in Phytophthora spp. and proved the pathogenicity of the isolates was tested on pigeon pea cv. pusa-33 at 35 days

old plants. The present study was carried out the determine the cultural, morphological and pathogenic variability of *PDC* isolates; this may and future PSB breeding programme and variation in the *Phytophthora drechsleri* f.sp. *cajani* isolates collected from different parts of central and eastern U.P.

Materials and Methods

The experiment was conducted at the Department of Plant Protection, ICAR-Indian Institute of Pulses Research, Kanpur, U.P.

Table 1 : Isolates collected from Different parts of Central and Eastern U.P.

Collection of disease sample, purification and isolation of the fungus

The samples of pigeon pea plants depicting typical symptoms of Phytophthora blight were collected in the paper bags from different parts of central and eastern U.P. The diseased sample were brought to the laboratory and isolated on potato dextrose agar medium. *P. drechsleri* f sp. *cajani* isolates collected from various parts of country was reported by Singh *et al.* (12).

Isolates No.	District	Place of collection	Pigeon pea cultivar				
Pdc1		ICAR-IIPR, Main Research Farm	Bahar				
Pdc2		ICAR-IIPR, Main Research Farm	Pusa-33				
Pdc3		ICAR-IIPR, Main Research Farm	UPAS-120				
Pdc4	Kanpur	ICAR-IIPR, Main Research Farm	Bahar				
Pdc5		ICAR-IIPR, Main Research Farm	ICP7119				
Pdc6		ICAR-IIPR, Main Research Farm	ICP7119				
Pdc7		ICAR-IIPR, Main Research Farm	UPAS-120				
Pdc8		ICAR-IIPR, Main Research Farm	Bahar				
Pdc9		ICAR-IIPR, New Research Campus (NRC)	Bahar				
Pdc10		ICAR-IIPR, New Research Campus (NRC)	UPAS120				
Pdc11	Kanpur	ICAR-IIPR, New Research Campus (NRC)	UPAS120				
Pdc12		ICAR-IIPR, New Research Campus (NRC)	PUSA-33				
Pdc13		ICAR-IIPR, New Research Campus (NRC)	ICP7119				
Pdc14		Kurara	Bahar				
Pdc15		Sumerpur	LOCAL				
Pdc16	Hamirpur	Muskura	UPAS-120				
Pdc17	—	Mandhaha	Bahar				
Pdc18		Jhalokhar	LOCAL				
Pdc19		Adalpura	ICP7119				
Pdc20	Mirzapur	Adalpura	UPAS-120				
Pdc21		Adalpura	MAL-13				
Pdc22		Adalpura	Bahar				
Pdc23		BHU Reasearch Farm	UPAS120				
Pdc24	Varanasi	BHU Reasearch Farm	ICP7119				
Pdc25		BHU Reasearch Farm	MAL-13				
Pdc26	Varanasi	Suswahi	Bahar				
Pdc27		Suswahi	ICP7119				
Pdc28		Ramnagar	BDN-2				
Pdc29	Varanasi	Ramnagar	MAL-13				
Pdc30		Ramnagar	UPAS120				

Isolation of fungus was done according to tissue segment method (Rangaswami, 1958). The disease sample washed thoroughly with distilled water, dried and cut with sharp sterilized blade into small bits (5 mm), keeping half healthy and half diseased portion intact. These pieces were surface sterilized with 1 per cent sodium hypochlorite (NaOCl) for 60 seconds. These surface sterilized leaf and stem bits were then inoculated on the solidified PDA poured petri plates and inoculated plates were incubated in BOD incubator at $26 \pm 2^{\circ}$ C temperature for 2 to 3 days. The isolates were purified by single hyphal tip method (Tutte, 1969).

Cultural and morphological variability

30 isolates of Phytophthora drechsleri f.sp. cajani for the study cultural and morphological characteristics on potato dextrose agar media. Seven days old culture of isolates were used to study of cultural and morphological characteristics viz. growth, colour, diameter of colony and sporulation on PDA media. PDA Petri dishes were inoculated with uniform inoculation bits at the centre and incubated at $28 \pm 2^{\circ}$ C for seven days. Colony diameter and type of colony growth were recorded after 7 days of inoculation. Based on colony colour and growth isolates are categorized in to different groups *i.e.*, cottony white, creamy white, light pink and fast growing, moderate growing, slow growing. These isolates are also categorized in to fluffy and mat type colony. Morphological and cultural characteristics the isolates were categorized into 6 groups (Singh et al., 2008). Morphological characters, Sporangia were observed in all the 30 isolates and based on the morphology of sporangia were categorized into three types *i.e.* papillate, semi- papillate and non- papillate and observed sporangia size (length, width), hyphal swellings.

Pathogenic variability

The pathogenicity of the isolated fungus was tested following Koch's postulates in a pot experiment on pigeon pea variety UPAS 120 and ICP 7119 under greenhouse conditions. The surface sterilized healthy seeds were sown 10 seeds/pot in pots filled with sterilized soil. The pathogenicity test was proved by soil drenching method. The pathogen was mass multiplied on potato dextrose broth (100 ml) in flasks and incubated at 25° C for 15 days. This fungus inoculum (mycelial mat + broth) was macerated in a blender for 1-2 min. Diluted this suspension with tap water to get a final volume of 200 ml. Then 35 days of sowing the plants were inoculated by pouring 100 ml inoculum around the base of the seedlings in a pot (Chand *et al.*, 2015). The plant mortality percent data was recorded after 5th days of inoculation. Mortality percent calculate the following formula.

Mortality % =
$$\frac{Total no. of Diseased Plants}{Total no. of plants} \times 100$$

Results and Discussion

Cultural and morphological characterization

All 30 isolates of Phytophthora drechsleri f.sp. cajani on the basis of mycelial growth categorized in to three groups; 3 isolates were fast growing (81.0 - 90.0)mm), 21 isolates were moderate growing (50.0 - 80.0)mm) and 6 isolates were categorized in to slow growing (below 50.0 mm), similar results also reported by Singh et al. (12), radial growth of Phytophthora drechsleri f.sp. cajani on PDA after 96 h of inoculation at 28°C as fast growing (85.0 - 90.0 mm), moderate growing (50.0 -84.9 mm) and slow growing (<50.0 mm). Singh and Dube (2005) characterized the Phytophthora drechsleri f.sp. cajani isolates from the north-western plain of India into two groups based on the mycelial growth. Based on morphology, radial growth, colony colour and mycelial characters, 39 isolates of Phytophthora drechsleri f.sp. cajani from different location of U.P., were characterized into three groups: fast growing, moderate growing and slow growing.

The differences in radial growth of isolates grown on same medium and incubated at same temperature (28 $\pm 2^{\circ}$ C), after 7 days observed maximum radial growth was measured in isolates *Pdc26* (90.0 mm) followed by *Pdc1* (86.0 mm) and minimum radial growth of isolates *Pdc10* (40.0 mm). Based on texture of colony and colour of colony of different isolates of *Phytophthora drechsleri f.sp. cajani* were categorized in to 5 groups (Table, 2 and Fig. 1) *i.e.* 18 isolates were exhibited cottony white with fluffy colony (*Pdc1, Pdc3, Pdc4, Pdc5, Pdc6, Pdc8, Pdc14, Pdc17, Pdc18, Pdc20, Pdc22, Pdc21, Pdc24, Pdc25, Pdc26, Pdc27, Pdc28,* and *Pdc30*) while 3 isolates (*Pdc7, Pdc29* and *Pdc16*)

Fig. 1: Cultural variability among the *Phytophthora* drechsleri f.sp. cajani isolates.

£.																													
Abundance of mycelium	Sparse	Sparse	Profuse	Sparse	Sparse	Sparse	Profuse	Sparse	Profuse	Sparse	Sparse	Sparse	Profuse	Profuse	Sparse	Profuse	Sparse	Sparse	Profuse	Sparse	Sparse	Sparse	Profuse	Profuse	Sparse	Sparse	Sparse	Sparse	Sparse
Hyphal swellings	Present	Absent	Present	Absent	Absent	Present	Absent	Absent	Absent	Present	Present	Absent	Absent	Present	Absent	Absent	Absent	Present	Absent	Absent	Absent	Absent	Absent	Absent	Present	Absent	Absent	Absent	Present
Shape of sporangia	Ovoid	Ovoid	Ovoid	Globose	Globose	Globose	Ovoid	Ovoid	Ovoid	Ovoid	Ovoid	Ovoid	Globose	Ovoid	Ovoid	Ovoid	Ovoid	Ovoid	Ovoid	Ovoid	Globose	Ovoid	Ovoid	Ovoid	Ovoid	Ovoid	Ovoid	Globose	Globose
Type of sporangia	Papillate	Papillate	Papillate	Papillate	Semi- papillate	Papillate	Semi- papillate	Semi- papillate	Semi- papillate	Semi- papillate	Semi- papillate	Semi- papillate	Papillate	Semi- papillate	Semi-papillate	Papillate	Papillate	Semi- papillate	Non-papillate	Non-papillate	Papillate	Non-papillate	Non- papillate	Non-papillate	Papillate	Papillate	Papillate	Papillate	Semi- papillate
Nature of sporulation	Fast	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate	Slow	Slow	Slow	Moderate	Moderate	Moderate	Moderate	Slow	Moderate	Moderate	Slow	Moderate	Moderate	Moderate	Slow	Fast	Slow	Fast	Moderate	Moderate	Moderate
Texture of colony	Fluffy	Fluffy	Fluffy	Fluffy	Fluffy	Fluffy	Mat type	Fluffy	Fluffy	Mat type	Mat type	Fluffy	Mat type	Fluffy	Mat type	Mat type	Fluffy	Fluffy	Mat type	Fluffy	Fluffy	Fluffy	Mat type	Fluffy	Fluffy	Fluffy	Fluffy	Fluffy	Mat type
Colour of the colony	Cottony white	Creamy white	Cottony white	Cottony white	Cottony white	Cottony white	Cottony white	Cottony white	Creamy white	Creamy white	Creamy white	Light pink	Creamy white	Cottony white	Creamy white	Cottony white	Cottony white	CottonyWhite	Creamy white	Cottony white	Cottony white	Cottony white	Creamy white	Cottony white	Cottony white	Cottony white	Cottony white	Cottony white	Cottony white
l growth of the (mm) after																													
	86.01	72.00	70.10	72.00	70.22	74.00	70.00	44.13	50.00	40.08	44.15	74.00	60.16	56.00	74.02	48.00	80.22	80.00	50.00	60.24	56.13	54.00	46.14	84.00	42.09	90:00	70.00	76.05	70.00
Name of isolates	Pdc1	Pdc2	Pdc3	Pdc4	Pdc5	Pdc6	Pdc7	Pdc8	Pdc9	Pdc10	Pdc11	Pdc12	Pdc13	Pdc14	Pdc15	Pdc16	Pdc17	Pdc18	Pdc19	Pdc20	Pdc21	Pdc22	Pdc23	Pdc24	Pdc25	Pdc26	Pdc27	Pdc28	Pdc29
no. S.	-	7	ю	4	S	9	2	~	6	10	11	12	13	14	15	16	17	18	19	8	21	53	33	24	52	26	27	78	63

*Average of three replications.

2977

Name of isolates	Sporangia									
i tunic of isolates	Length (µm)	Width (µm)	Size (µm ²)							
Pdc1	18.8	11.4	207.48							
Pdc2	20.1	12.4	249.24							
Pdc3	19.8	10.8	213.84							
Pdc4	19.6	11.3	221.48							
Pdc5	19.1	12.3	234.93							
Pdc6	22.1	13.6	300.56							
Pdc7	21.3	14.1	300.33							
Pdc8	19.4	11.4	221.16							
Pdc9	18.9	12.1	228.69							
Pdc10	20.2	11.8	238.36							
Pdc11	22.4	13.2	295.68							
Pdc12	20.3	13.8	280.14							
Pdc13	19.8	12.6	249.48							
Pdc14	20.7	12.9	267.03							
Pdc15	21.8	13.1	285.58							
Pdc16	19.9	12.2	242.78							
Pdc17	22.6	14.2	320.92							
Pdc18	21.4	14.4	308.16							
Pdc19	20.3	13.7	278.11							
Pdc20	19.7	12.8	252.16							
Pdc21	19.4	11.7	226.98							
Pdc22	20.5	11.9	243.95							
Pdc23	20.8	12.2	253.76							
Pdc24	19.8	11.6	229.68							
Pdc25	21.2	13.5	286.20							
Pdc26	20.6	12.4	255.44							
Pdc27	21.9	11.8	258.42							
Pdc28	22.4	13.3	297.92							
Pdc29	20.7	12.3	254.61							
Pdc30	19.6	11.9	233.24							

 Table 3: Sporangia size (length and width) of different isolates of *P. drechsleri* f.sp. cajani.

exhibited white mat type colony and 2 isolates showed creamy white fluffy colony (*Pdc2* and *Pdc9*), Other 6 isolates exhibited creamy white mat type colony (*Pdc10*, *Pdc11*, *Pdc13*, *Pdc15*, *Pdc19*, *Pdc23*) and 1 isolate showed light pink fluffy colony (*Pdc12*), similar results also found by Singh *et al.* (12), he collected thirty-nine isolates of *Phytophthora drechsleri f.sp. cajani* from different locations of Uttar Pradesh and categorized on the basis of cultural and morphological variability. The isolates were categorized into six groups i.e., fast growing creamy white (10 isolates), fast growing cottony white (6 isolates), moderate growing creamy white (12 isolates), moderate growing cottony white (6 isolates), slow growing creamy white (2 isolates) and slow growing cottony white

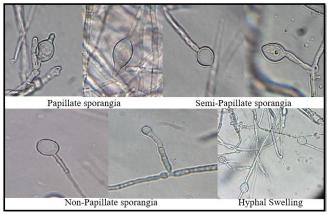


Fig. 2 : Morphological variability among the Pdc isolates.

Fig. 3 : Pathogenic variability of *Phytophthora drechsleri* f.sp. *cajani* isolates on pigeon pea cultivars, UPAS120 and ICP7119.

(3 isolates).

Sporangia were observed in all the 30 isolates and based on the morphology, Sporangia were categorized in to three types *i.e.*, papillate, semi- papillate and nonpapillate (Table, 02 and Fig. 02). Papillate sporangia were observed in 14 isolates, these isolates were Pdc1, Pdc2, Pdc3, Pdc4, Pdc6, Pdc13, Pdc16, Pdc17, Pdc21, Pdc25, Pdc26, Pdc27, Pdc28 and Pdc30. Semipapillate sporangia found in eleven isolates were Pdc5, Pdc7, Pdc8, Pdc9, Pdc10, Pdc11, Pdc12, Pdc14, Pdc15, Pdc18 and Pdc29. In five isolates sporangia were found non papillate Pdc19, Pdc20, Pdc22, Pdc23 and Pdc24. Chlamydospores were not found any isolates. Nine isolates were produced hyphal swellings (*Pdc1*, Pdc3, Pdc6, Pdc10, Pdc11, Pdc14, Pdc18, Pdc25 and Pdc29). Similar results also found by Pande (1) observed that, growth of P. drechsleri f.sp. cajani on selective media shows terminal and outer calary hyphal swelling. Agrawal et al. (16) observed non-papillate sporangia during present investigation were also reported in P. drechsleri f. sp. cajani isolates.

Size of sporangia and variation in length, width was studied on potato dextrose agar for all isolates of *P. drechsleri f. sp. cajani*. In all 30 isolates, maximum length of sporangia was recorded in *Pdc17* (22.6 µm) and

S. no.	Name of the Isolates	Disease M Pathoge culti	non two ivar	Nature of Pathogenicity						
		UPAS120	ICP7119							
1	Pdc1	44.44	42.12	Pathogenic						
2	Pdc2	85.71	70.50	Highly pathogenic						
3	Pdc3	24.50	22.33	Less pathogenic						
4	Pdc4	87.50	70.21	Highly pathogenic						
5	Pdc5	66.37	64.28	Pathogenic						
6	Pdc6	80.00	85.71	Highly pathogenic						
7	Pdc7	11.11	14.22	Less pathogenic						
8	Pdc8	37.50	40.00	Pathogenic						
9	Pdc9	55.26	44.44	Pathogenic						
10	Pdc10	50.00	55.60	Highly pathogenic						
11	Pdc11	42.00	37.50	Pathogenic						
12	Pdc12	100	86.22	Highly pathogenic						
13	Pdc13	44.44	46.52	Pathogenic						
14	Pdc14	80.56	100	Highly pathogenic						
15	Pdc15	48.72	42.85	Pathogenic						
16	Pdc16	100	82.85	Highly pathogenic						
17	Pdc17	45.00	40.00	Pathogenic						
18	Pdc18	100	83.00	Highly pathogenic						
19	Pdc19	35.28	33.33	Pathogenic						
20	Pdc20	80.00	72.00	Highly pathogenic						
21	Pdc21	100	80.22	Highly pathogenic						
22	Pdc22	90.00	100	Highly pathogenic						
23	Pdc23	46.33	42.85	Pathogenic						
24	Pdc24	100	81.33	Highly pathogenic						
25	Pdc25	71.42	68.22	Pathogenic						
26	Pdc26	20.00	22.60	Less pathogenic						
27	Pdc27	78.85	80.00	Highly pathogenic						
28	Pdc28	0.00	0.00	Non-pathogenic						
29	Pdc29	50.00	48.28	Pathogenic						
30	Pdc30	54.54	55.33	Highly pathogenic						
31	Control	0.00	0.00							

Table 4 : Pathogenicity test of *Phytophthora drechsleri* f.sp.*cajani isolates* on pigeon pea seedlings.

minimum length observed in *Pdc1* (18.2 µm), maximum width of sporangia was 14.2 µm in *Pdc17* and minimum width were observed 11.2 µm in *Pdc24*, maximum size of sporangia was observed in isolate *Pdc17* in 320.92 µm², while minimum size of sporangia was recorded in *Pdc1* in 207.48µm². The sporangia size, length and width are presented in Table 3.

Pathogenic variability

The pathogenicity of the 30 isolates were tested on pigeon pea cv. UPAS120 and ICP7119 at 35 days old plants in pot. On the basis of pathogenicity experiment all the 30 isolates of *Phytophthora* were categorized into 0-4 rating scale (Singh *et al.*, 2016).

Category	Mortality %
Non- pathogenic	0
Less pathogenic	1-25
Pathogenic	26-50
Highly pathogenic	>50

Out of 30 Pdc isolates, 7 isolates (Pdc12, Pdc14, Pdc16, Pdc18, Pdc21, Pdc22) showed 100% mortality of pigeon pea plants. In all 30 isolates, 14 isolates (Pdc2, Pdc4, Pdc6, Pdc10, Pdc12, Pdc14, Pdc16, Pdc18, Pdc20, Pdc21, Pdc22, Pdc24, Pdc27 and Pdc30) showed >50% mortality of pigeon pea plants, so they were placed in highly pathogenic category, 12 isolates (Pdc1, Pdc5, Pdc8, Pdc9, Pdc11, Pdc13, Pdc15, Pdc17, Pdc19, Pdc23, Pdc25 and Pdc29) had the mortality range between 26-50% so they were placed in pathogenic category. 3 isolates (Pdc3, Pdc7 and Pdc26) showed 1-25% of pigeon pea plant mortality so they are placed under less pathogenic category. Pdc28 did not show any mortality and it was found to be non-pathogenic. The results are depicted in Table 4 and Fig. 3. Similar results also found by Singh et al. (17). The isolate PDC013-1 and PDC014-3 showed highest 47.0% plant mortality on ICP 7119 genotype. Among the isolates PDC014-3 killed 28.6% plants after 4th day of inoculation.

Conclusion

All 30 isolates exhibited great variability when cultured on PDA medium with colony colour varying from cottony white and creamy white. The texture of colonies was fluffy and mat type. On the basis of cultural variability, colour and texture of colony, 30 isolates were categorized into 5 groups *i.e.*, cottony white fluffy colony (18 isolates), cottony white mat type colony (3 isolates), creamy white fluffy colony (2 isolates), creamy white mat type colony (6 isolates) and light pink fluffy colony (1 isolates). Based on the morphology of sporangia were categorized into 3 types *i.e.*, papillate (14 isolates), semi-papillate (11 isolates) and non- papillate (5 isolates). The isolates of Phytophthora drechsleri f.sp. cajani, grown on PDA medium, developed sporangia lengths ranging between 18.80 - 22.60 µm and breadth between 10.80 - 14.40 μm. The sporangia size ranged between 207.48 - 320.92 μm². The pathogenicity test of *Phytophthora drechsleri* f.sp. cajani isolates was determined on susceptible pigeon pea cultivar UPAS120 and ICP7119. Among 30 isolates, 14 isolates showed >50% mortality of pigeon pea plants, so they were placed in highly pathogenic category, 12 isolates exhibited the mortality range between 26-50%

so they were placed in pathogenic category, 3 isolates (*Pdc3, Pdc7* and *Pdc26*) showed 1-25% of pigeon pea plant mortality so they are placed under less pathogenic category. 1 isolate did not show any mortality. It was found to be non-pathogenic.

Acknowledgements

Authors are highly grateful to Director, ICAR-Indian Institute of Pulses Research (IIPR), Kanpur for his encouragement and constant support during my research.

Competing interests

Authors have declared that no competing interests exist.

References

- Agrawal, S.C., Gupta R.K. and. Prasad K.V.V. (2002). In vivo sporulation of Phytophthora drechsleri f.sp. cajani, causing blight in Pigeon pea. Indian J. Pulses Res., 15 (2), 195-196.
- Amin, K.S., Baldev B. and Williams F.J. (1978). *Phytophthora cajani*, A new species causing stem blight on *Cajanus cajan*. *Mycologia*, **70**, 171-176.
- Chand, R., Singh V., Singh C.K., Ghosh R. and Sharma M. (2015). Nodal inoculation - a quick and easy inoculation technique for Phytophthora blight of Pigeon pea. 3rd international symposium on "Phytophthora: taxonomy, genomics, pathogenicity, resistance and disease management" ICAR-IIHR, Bengaluru, 30: 9-12.
- Jadesha, G, Sharma M. and Reddy N. (2019). Unravelling Role of Edaphic Stress on Development of Phytophthora Blight (*Phytophthora cajani*) in Pigeon pea. Int. J. Curr. Microbiol. App. Sci., 8(12), 1336-1345.
- Kannaiyan, J., Nene Y.L., Reddy M.V., Ryan J.G. and Raju T.N. (1984). Prevalence of Pigeon pea diseases and associated crop losses in Asia, Africa and the Americas. *Trop. Pest Manage.*, **30**(1), 62-71.
- Nene, Y.L., Sheila V.K. and Sharma S.B. (1996). A World List of Chickpea and Pigeon pea Pathogens. 5th ed. ICRISAT, Patancheru, India. 27.

- Pal, M., Grewal J.S. and Sarbhoy A.K. (1970). A new stem rot of arhar caused by *Phytophthora*. *Indian Phytopathology*, 23, 583-587.
- Pande, S., Sharma M., Mangla U.N., Ghosh R. and Sundaresan G. (2011). Phytophthora blight of Pigeon pea [*Cajanus cajan* (L.) Millsp.]: An updating review of biology, pathogenicity and disease management. *Crop Protection*, **30**, 951-957.
- Rangaswami, G (1958). An agar blocks technique for isolating soil microorganisms with special reference to *Pythiaceous* fungi. *Science and Culture*, **24**, 85.
- Reddy, M.V., Raju T.N. and Lenne J.M. (1998). Diseases of Pigeon pea. In. Ed. Allen, D.J. Legumes 517-558.
- Singh, B. and Dubey S.C. (2005). Cultural and morphological variability in *Phytophlhora drechsleri* f.sp. *cajani* causing Pigeon pea blight. *Ann. PI. Pretec. Sci.*, **13**(2), 465-529.
- Singh, C.K., Sudhir I., Chand R., Singh V. and Sharma M. (2017). Variability in *Phytophthora drechsleri* f.sp. *cajani* and effect of temperature. J. Pure Appl. Microbiol., 11(2), 1053-1059.
- Singh, V.B., Singh V.K., Chauhan V.B. and Singh S.K. (2008). Morphological and Cultural variability in *Phytophthora drechsleri* f.sp. *cajani* causing Blight of Pigeon pea. *Ann. Pl. Protec.*, **16** (1), 168-171.
- Tutte, J. (1969). Plant pathological methods Fungi and bacteria. Burgess publishing company. Minnesota. USA. 229.
- Vishwa, Dhar, Singh R.A. and Gurha S.N. (2004). Integrated disease management in pulse crops. In. Ed. Ali Masood, Singh B.B., Kumar Shiv and Dhar Vishwa. *Indian Society* of Pulses Research and Development, IIPR, Kanpur, India. Pulses in New Perspective. 325-344.
- Wearing, A.H. and Birch J. (1988). Root rot of Pigeon pea. Int. Pigeon Pea Newslett., 8, 13.
- Williams, F.J., Grewal J.S. and Amin K.S. (1968). Serious and new diseases of pulse crops in India in 1966. *Plant Disease Report*, 52, 300-304.